m/f Jan Heweliusz – noc, która zmieniła Bałtyk – część 2

13 stycznia 1993 roku Jan Heweliusz wyszedł ze Świnoujścia w warunkach, które już na początku budziły poważne wątpliwości. Prognozy polskie i niemieckie różniły się skalą, jednak oba zestawy wskazywały na sztorm, który mógł szybko przerodzić się w ekstremalne zagrożenie. Analiza decyzji podjętych na mostku pokazuje, jak wąski był margines bezpieczeństwa tej nocy.

Balastowanie jednostki i możliwe nieprawidłowości systemowe

Na godzinę 23.30 dnia 13.01.1993 m/f Jan Heweliusz obiera kurs 350° w kierunku północnym. Przechył ok. 5° jest bezproblemowy i normalny. Wiatr WNW osiąga 6B z prognozą wzrostu do 10B.

W tym momencie pojawia się kwestia kluczowa z punktu widzenia stateczności promu – stan jego balastowania w chwili wyjścia w morze. Są w tej fazie rejsu spekulacje, iż nie dobalastował się idąc na zbiornikach balastowych zalanych jedynie w celu wypoziomowania się do torów kolejowych na brzegu- jeśli tak to ma to duże znaczenie i pod kątem stateczności jak, pod kątem samej powierzchni wolnej burty, sterowności i siły napędowej.

Statki idące (płynące) pod balastem, a więc z wpompowaną wodą do przydennych zbiorników balastowych po obliczeniu kalkulacji statecznościowych co jest rutyną I oficera na statku morskim i gdzie dokumentacja trafia do zatwierdzenia przez kapitana – pracują na fali ciężej, ale pewniej i z mniejszym obciążeniem dla układu mocowania ładunków. Ta pewność bierze się między innymi stąd, że statek nie wyskakuje tak chętnie sterami i śrubami napędowymi ponad wodę co znacząco wpływa na sterowność i siłę napędową. Statek idący z mniejszą ilością wody w tych zbiornikach zachowuje się na fali dużo lżej, za to gwałtowniej się przechyla i prostuje oraz jest podatniejszy na oddziaływanie wiatru i fali, bo „płycej siedzi zanurzony w wodzie” co z kolei ma znaczenie dla luzowania się ładunku i samego komfortu bytowego załogi i pasażerów.

Z ogólnie dostępnych informacji wynika, iż próbę dobalastowania (więc dopompowania wody) do zbiorników przydennych pojęto po wyjściu w morze ale jedynie w celu kompensacji przechyłu, a nie równomiernie zanurzając statek zwiększając jego odporność na sztorm – system ten pozwala na zmianę przechyłu jednostki zarówno wzdłuż (tzw. trym) jak i w poprzek (lewa/prawa burta) – ale te próby wykazały, iż nie wszystkie składowe systemu działają poprawnie. Które i w jakim zakresie nie mam wiedzy. Zwyczajowo informacje o niesprawnościach krytycznych są komunikowane bezzwłocznie z CMK (centrum manewrowo kontrolne działu maszynowego – to taki mostek tyle, że działu maszynowego usytuowany tak by obejmował także wzrokowo zazwyczaj silniki główne, sygnałowo i energetycznie co oczywiste obejmuje wszystkie systemy statku) prosto na mostek, skąd są przekazywane kapitanowi. W takich warunkach w jakie płyną każda niesprawność powinna być meldowana pomimo morskich systemów zapasowych na większości z układów.

Jeśli dobór ilości wody w zbiornikach balastowych obejmował jedynie kalkulację ształunkową (tzw. sztauplan – kalkulacja stateczności z uwzględnieniem rozmieszczenia ładunku) bez uwzględnienia zapowiadanych i ciężkich warunków meteorologicznych – to kolejny obszar, gdzie można działać bardziej zapobiegawczo.

Tutaj podejrzany jest także aspekt zalania betonem pokładu samochodowego czy był ujęty w tych kalkulacjach lub czy dokumentacyjnie na statku został przemilczany. Jego wpływ na sztauplan też powinien być widoczny w kalkulacjach stateczności. Mowa o 60–120T zlokalizowanych wysoko ponad linią wodną, a więc w bardzo niekorzystnej lokalizacji. Co więcej był promem nadbudowanym i o stosunkowo małej szerokości do własnej długości i wysokości.

Kolejny istotny czynnik w gestii kapitana, a umykający w ocenie ryzyka wyjścia z portu to temperatura wody i powietrza wynosząca wtedy odpowiednio 2st. C dla wody i -1 st. C dla powietrza. Warunki przetrwania w wodzie są wykładnią dla kadry oficerskiej mówiącej o czasie potrzebnym do zakresu przygotowania, a więc jakie środki ratunkowe będą w użyciu i ile czasu należy zabezpieczyć by je w sposób skoordynowany wydać, a osoby przeliczyć, pogrupować na wyjścia i przeszkolić- później w wietrze, chłodzie, bryzgach, śliskim pokładzie i huku fal nie ma na to żadnych szans.

Warunki pogodowe i akcja ratunkowa SAR

To co wie każdy oficer to fakt, iż przy takich warunkach temperaturowych osoby bez kamizelek tonie po 15 minutach, z kamizelkami utrata przytomności następuje po 120 minutach, dla osób bez strojów ratunkowych po przemoczeniu, a znajdujących się w tratwach wynosi do 4h, a w strojach ratunkowych i w tratwach to ponad 24h. Należy mieć na uwadze, iż sam fakt, iż osoba pozostaje przytomna i ma zachowane zdolności życiowe nie przesądza o powodzeniu akcji ratunkowej. Najszybciej są tracone czucie i możliwości chwytne w kończynach, a bez tej możliwości jedyna szansa na ratunek to wpięcie uprzęży śmigłowcowej przez towarzyszące mu osoby taką zdolność posiadające. Tu kluczowa jest asysta ratownika w oporządzeniu nurkowym opuszczanego ze śmigłowca gdyż ryzyko iż żadna z osób na wodzie nie będzie posiadała już zdolności manualnych jest bardzo wysokie.

Z ogólnych informacji wynika, iż zespoły SAR (search and rescue – poszukiwawczo- ratunkowe) nie stosowały metody opuszczenia nurka SAR, co przy takich warunkach pogodowych w miejscu tragedii jest może być o tyle uzasadnione, że dowódcy akcją ocenili je na zbyt wysokie dla aktualnych warunków. Później ratownika–nurka opuścił śmigłowiec duński ratując jedną osobę. Ocena nie może być jednoznaczna gdyż każdy zespół ratunkowy mierzy własne siły i środki do aktualnie panujących warunków.

Podobnie argument o braku zgody na wylot polskich śmigłowców – rozważymy go w dalszych częściach, też nie jest jednoznaczny, tam kalkulacja ryzyk jest bieżąca.

Śmiertelne warunki: aerozol, zalewanie falami i utrata zdolności przeżycia

Gdy do warunków temperaturowych dodamy ryzyko utonięć i to w przypadku sztormu o takiej sile na dwa sposoby – od zalewania falami co jest do przewidzenia, ale i od oddychania kroplami wody w powietrzu. Krople te powstają w wyniku trzech mechanizmów czysto fizycznych- parowanie, tu pomijalne, od zerwanych grzyw fal niesione wiatrem oraz od pęcherzy powietrza wracających z kipieli i po kontakcie z powierzchnią wyrzucającą aerozole wody morskiej.

Morze przy 12B, takiej prognozy jeszcze kadra oficerska z pewnością nie wiedziała wychodząc z portu- jest całe białe pokryte jedną wielką pianą morską ułożoną wzdłuż fal z poduszką tej duszącej mgły wodnej niesionych kropli i aerozoli sięgającą wielu metrów nad poziom wody. Wspomnienie jednego z członków załogi m/f Silesia mówi o widoku jak by morze było pokryte mgłą. By zmniejszyć ryzyko utonięć od oddychania powietrzem z dużą zawartością wody w nowoczesnych strojach ratunkowych dodano kaptury na część twarzową.

Jak do tej pory wyłania nam się obraz promu z 65 osobami idącego zgodnie z promowym rozkładem rejsu o podejrzanej kondycji technicznej, małymi marginesami stateczności, bez działań typowo zapobiegawczych w ciężkie warunki pogodowe prognozowane na „do 10B” pod rozkazem kapitana – sam fakt nie świadomości kapitana o nadciągającym 12B orkanie jest zasadny, gdyż istnieje przekaz, gdzie na stole kapitanatu wylądował meldunek niemieckiego ostrzeżenia pogodowego, ale nie został przekazany dalej. Stąd też mam duże wątpliwości czy kapitan na tym etapie rejsu, a więc na kluczowym z punktu widzenia swobody podejmowania decyzji i reakcji manewrowej – miał wiedzę o faktycznym zagrożeniu pogodowym. Przechył wynikający z naporu wiatru wynosi ok 5st i jest zjawiskiem całkowicie poprawnym.

W kolejnej części przejdziemy do momentu, w którym narastający sztorm zaczął wywierać bezpośredni wpływ na zachowanie m/f Jan Heweliusz. To faza, w której każda decyzję na mostku, każda niesprawność techniczna i konstrukcyjne braki zapasu stateczności zaczęły nabierać kluczowego znaczenia, a warunki na Bałtyku nie pozwalały już na ich przetrwanie. Rozważymy też strategie sztormowe kapitana i opiszę dlaczego nie stosował alternatyw ucieczkowych, a szedł mając coraz mniejsze okno kursowe jednego halsu dla zachowania jednostki na wodzie. Powróci do nas pojęcie pułapki kursowej, którą Państwu przybliżę zaznaczając iż są sytuacje gdy zarówno skierowanie dziobu zmianą kursu czy w lewo czy w prawo jest niekorzystne.

Robert Dmochowski – Absolwent, stypendysta naukowy i były pracownik naukowo–dydaktyczny Politechniki Morskiej, pasjonat morza i techniki morskiej, wieloletni staż morski na morzach i oceanach. Popularyzator wiedzy o morzu, instruktor i jako kapitan zdobywca największej ilości medali w historii regat Baltic Extreme Race.

Udostępnij ten wpis

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

  • PGE i Ørsted z wykonawcą rozruchu lądowej stacji transformatorowej Baltica 2

    PGE i Ørsted z wykonawcą rozruchu lądowej stacji transformatorowej Baltica 2

    PGE oraz Ørsted, partnerzy realizujący projekt morskiej farmy wiatrowej Baltica 2, wybrali wykonawcę odpowiedzialnego za uruchomienie lądowej stacji transformatorowej zlokalizowanej w gminie Choczewo na Pomorzu. Prace rozruchowe zrealizuje polska firma Enprom.

    Rozruch lądowej infrastruktury przyłączeniowej Baltica 2

    Wybór wykonawcy prac rozruchowych potwierdza zaawansowanie jednego z kluczowych elementów infrastruktury przyłączeniowej morskiej farmy wiatrowej Baltica 2. Jak podkreśla Bartosz Fedurek, prezes zarządu PGE Baltica, prawidłowo przeprowadzony rozruch elektryczny oraz stabilna eksploatacja lądowej stacji transformatorowej stanowią warunek niezakłóconej pracy morskich turbin wiatrowych i ciągłej produkcji energii elektrycznej.

    Istotnym elementem decyzji jest także udział polskiej firmy w realizacji zadania. Wpisuje się to w konsekwentnie realizowaną strategię zwiększania udziału krajowego komponentu w projekcie Baltica 2, który pozostaje jednym z największych przedsięwzięć offshore wind w regionie Morza Bałtyckiego.

    Znaczenie lądowej stacji transformatorowej w projekcie offshore wind

    Jak zaznacza Ulrik Lange, wiceprezydent i dyrektor zarządzający projektu Baltica 2 w Ørsted, lądowa stacja elektroenergetyczna pełni kluczową rolę w monitorowaniu i sterowaniu całą infrastrukturą elektryczną farmy. To z tego obiektu prowadzona będzie kontrola pracy morskich stacji elektroenergetycznych oraz turbin wiatrowych zlokalizowanych około 40 km od brzegu.

    Lądowa stacja transformatorowa stanowi centralny element systemu wyprowadzenia mocy z farmy wiatrowej i integracji wytwarzanej energii z krajowym systemem elektroenergetycznym.

    Zakres prac i harmonogram realizacji

    Zawarta z Enprom umowa obejmuje przeprowadzenie pełnego zakresu prac rozruchowych wyprowadzenia mocy. Obejmują one testy zgodności wymagane przez operatora systemu przesyłowego – Polskie Sieci Elektroenergetyczne – weryfikację założeń projektowych, ruch próbny oraz przekazanie stacji do użytkowania.

    Okres realizacji zamówienia przewidziano na 21 miesięcy. W tym czasie wykonawca sprawdzi wszystkie zasadnicze urządzenia związane z przesyłem i rozdziałem energii elektrycznej, a także systemy odpowiedzialne za bezpieczną i stabilną pracę całego obiektu.

    Jak wskazuje Piotr Tomczyk z zarządu Enprom, udział w projekcie Baltica 2 oznacza obecność spółki jako wykonawcy we wszystkich czterech morskich farmach wiatrowych realizowanych obecnie na polskim Bałtyku.

    Parametry techniczne stacji i przyłączenie do KSE

    Lądowa stacja najwyższych napięć dla farmy Baltica 2 powstaje na terenie blisko 13 hektarów w miejscowości Osieki Lęborskie, w gminie Choczewo. To do niej trafiać będzie energia elektryczna wytwarzana przez morską farmę wiatrową.

    Po dotarciu do brzegu prąd o napięciu 275 kV zostanie przesłany około 6-kilometrową trasą kablową do stacji transformatorowej, gdzie nastąpi jego transformacja do poziomu 400 kV. Następnie energia zostanie wprowadzona do krajowej sieci elektroenergetycznej poprzez pobliską stację PSE Choczewo.

    Na północ od stacji, w rejonie linii brzegowej, realizowane są prace przy przewiercie HDD, umożliwiającym połączenie części lądowej i morskiej infrastruktury kablowej przy ograniczeniu oddziaływania na środowisko.

    Rozruch lądowej stacji transformatorowej nie będzie miał wpływu na funkcjonowanie lokalnych sieci dystrybucyjnych niskiego i średniego napięcia.

    Baltica 2 – największa morska farma wiatrowa w Polsce

    Projekt Baltica 2 o mocy do 1,5 GW jest wspólną inwestycją PGE i Ørsted. Po uruchomieniu w 2027 roku stanie się największą morską farmą wiatrową w Polsce. Zdolność wytwórcza instalacji pozwoli na zasilenie zieloną energią około 2,5 mln gospodarstw domowych, wzmacniając bezpieczeństwo energetyczne kraju oraz udział odnawialnych źródeł energii w krajowym miksie energetycznym.

    Źródło: PGE Baltica